Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2401118, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641859

RESUMO

As an empirical tool in materials science and engineering, the iconic phase diagram owes its robustness and practicality to the topological characteristics rooted in the celebrated Gibbs phase law (F = C - P + 2). When crossing the phase diagram boundary, the structure transition occurs abruptly, bringing about an instantaneous change in physical properties and limited controllability on the boundaries (F = 1). Here, we expand the sharp phase boundary to an amorphous transition region (F = 2) by partially disrupting the long-range translational symmetry, leading to a sequential crystalline-amorphous-crystalline (CAC) transition in a pressurized In2Te5 single crystal. Through detailed in-situ synchrotron diffraction, we elucidate that the phase transition stems from the rotation of immobile blocks [In2Te2]2+, linked by hinge-like [Te3]2- trimers. Remarkably, within the amorphous region, the amorphous phase demonstrates a notable 25% increase of the superconducting transition temperature (Tc), while the carrier concentration remains relatively constant. Furthermore, we propose a theoretical framework revealing that the unconventional boost in amorphous superconductivity might be attributed to an intensified electron correlation, triggered by a disorder-augmented multifractal behavior. These findings underscore the potential of disorder and prompt further exploration of unforeseen phenomena on the phase boundaries. This article is protected by copyright. All rights reserved.

2.
J Bioinform Comput Biol ; 22(1): 2450002, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38567387

RESUMO

Identifying valuable features from complex omics data is of great significance for disease diagnosis study. This paper proposes a new feature selection algorithm based on sample network (FS-SN) to mine important information from omics data. The sample network is constructed according to the sample neighbor relationship at the molecular (feature) expression level, and the distinguishing ability of the feature is evaluated based on the topology of the sample network. The sample network established on a feature with a strong discriminating ability tends to have many edges between the same group samples and few edges between the different group samples. At the same time, FS-SN removes redundant features according to the gravitational interaction between features. To show the validation of FS-SN, it was compared on ten public datasets with ERGS, mRMR, ReliefF, ATSD-DN, and INDEED which are efficient in omics data analysis. Experimental results show that FS-SN performed better than the compared methods in accuracy, sensitivity and specificity in most cases. Hence, FS-SN making use of the topology of the sample network is effective for analyzing omics data, it can identify key features that reflect the occurrence and development of diseases, and reveal the underlying biological mechanism.


Assuntos
Algoritmos
3.
J Phys Condens Matter ; 36(16)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38194718

RESUMO

The research on hydrogen-rich ternary compounds attract tremendous attention for it paves new route to room-temperature superconductivity at lower pressures. Here, we study the crystal structures, electronic structures, and superconducting properties of the ternary Ca-U-H system, combining crystal structure predictions withab-initiocalculations under high pressure. We found four dynamically stable structures with hydrogen clathrate cages: CaUH12-Cmmm, CaUH12-Fd-3m, Ca2UH18-P-3m1, and CaU3H32-Pm-3m. Among them, the Ca2UH18-P-3m1 and CaU3H32-Pm-3mare likely to be synthesized below 1 megabar. Thefelectrons in U atoms make dominant contribution to the electronic density of states around the Fermi energy. The electron-phonon interaction calculations reveal that phonon softening in the mid-frequency region can enhance the electron-phonon coupling significantly. TheTcvalue of Ca2UH18-P-3m1 is estimated to be 57.5-65.8 K at 100 GPa. Our studies demonstrate that introducing actinides into alkaline-earth metal hydrides provides possibility in designing novel superconducting ternary hydrides.

4.
Adv Sci (Weinh) ; 10(35): e2301332, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37944509

RESUMO

Topological transition metal dichalcogenides (TMDCs) have attracted much attention due to their potential applications in spintronics and quantum computations. In this work, the structural and electronic properties of topological TMDCs candidate ZrTe2 are systematically investigated under high pressure. A pressure-induced Lifshitz transition is evidenced by the change of charge carrier type as well as the Fermi surface. Superconductivity is observed at around 8.3 GPa without structural phase transition. A typical dome-shape phase diagram is obtained with the maximum Tc of 5.6 K for ZrTe2 . Furthermore, the theoretical calculations suggest the presence of multiple pressure-induced topological quantum phase transitions, which coexists with emergence of superconductivity. The results demonstrate that ZrTe2 with nontrivial topology of electronic states displays new ground states upon compression.

5.
Nat Commun ; 14(1): 6373, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821432

RESUMO

The tunability of reaction pathways is required for exploring efficient and low cost catalysts for ammonia synthesis. There is an obstacle by the limitations arising from scaling relation for this purpose. Here, we demonstrate that the alkali earth imides (AeNH) combined with transition metal (TM = Fe, Co and Ni) catalysts can overcome this difficulty by utilizing functionalities arising from concerted role of active defects on the support surface and loaded transition metals. These catalysts enable ammonia production through multiple reaction pathways. The reaction rate of Co/SrNH is as high as 1686.7 mmol·gCo-1·h-1 and the TOFs reaches above 500 h-1 at 400 °C and 0.9 MPa, outperforming other reported Co-based catalysts as well as the benchmark Cs-Ru/MgO catalyst and industrial wüstite-based Fe catalyst under the same reaction conditions. Experimental and theoretical results show that the synergistic effect of nitrogen affinity of 3d TMs and in-situ formed NH2- vacancy of alkali earth imides regulate the reaction pathways of the ammonia production, resulting in distinct catalytic performance different from 3d TMs. It was thus demonstrated that the appropriate combination of metal and support is essential for controlling the reaction pathway and realizing highly active and low cost catalysts for ammonia synthesis.

6.
J Org Chem ; 88(19): 13678-13685, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37691267

RESUMO

Chemical structure tunability of organic π-conjugated molecules (OCMs) is highly appealing for fine-tuning the optoelectronic properties. Herein, we report a new series of carbazole-functionalized diazaphosphepines (DPP-CBZs) via one-pot phosphorus-nitrogen (P-N) chemistry. The one-pot synthesis harnessed the mild and selective P-N chemistry that successively installed carbazole moieties and seven-membered heterocycles at one P-center. Single-crystal structure studies revealed the tweezer-like structures for 1PO, 2PO, and 3PO that maintained the intramolecular donor-acceptor interactions between [d]-aryl moieties and carbazole. DPP-CBZs exhibited a more twisted central-diazaphosphepine ring compared with the reference molecules (1-3MO without carbazole group). DPP-CBZs with strong electron-accepting [d]-Ars generally showed lower photoluminescence quantum yields (PLQYs) than those of the reference molecules, which is probably due to the intramolecular charge transfer (ICT) from electron-donating carbazole to electron-withdrawing [d]-Ars. Upon the oxidation of the P-centers, PLQYs of DPP-CBZs increased. Furthermore, photophysical studies and theoretical studies suggested that the carbazole group had a strong impact on the structures of DPP-CBZs. As a proof of concept, we showed that grinding the mixture of 1PO as the electron-donating tweezer and benzene-1,2,4,5-tetracarbonitrile (BzCN) as the electron acceptor induced the formation of the CT complex.

7.
Phys Rev Lett ; 131(11): 116501, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37774284

RESUMO

Here we report a combined study of low-temperature scanning tunneling microscopy and dynamical mean-field theory on PdCrO_{2}, a delafossite metal with an antiferromagnetic order below ∼37.5 K. First, on the CrO_{2}-terminated polar surface we detect a gaplike feature both below and above the Néel temperature. The dynamical mean-field theory calculations indicate that this gap is opened due to the strong correlations of Cr-3d electrons, suggesting the hidden Mott nature of the gap. Then, we observe two kinds of Pd-terminated polar surfaces. One is a well-ordered Pd surface with the Fermi-surface-nesting-induced incommensurate charge modulation, while the other one is a reconstructed Pd surface with the individual nanoscale nonperiodic domain structures. On the well-ordered Pd surface, the interference between the incommensurate charge modulation and the atomic lattice forms the periodic moiré pattern. Our results provide important microscopic information for fully understanding the correlated electronic properties of this class of materials.

8.
Anal Chem ; 95(31): 11603-11612, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37493263

RESUMO

Large-scale metabolite annotation is a bottleneck in untargeted metabolomics. Here, we present a structure-guided molecular network strategy (SGMNS) for deep annotation of untargeted ultra-performance liquid chromatography-high resolution mass spectrometry (MS) metabolomics data. Different from the current network-based metabolite annotation method, SGMNS is based on a global connectivity molecular network (GCMN), which was constructed by molecular fingerprint similarity of chemical structures in metabolome databases. Neighbor metabolites with similar structures in GCMN are expected to produce similar spectra. Network annotation propagation of SGMNS is performed using known metabolites as seeds. The experimental MS/MS spectra of seeds are assigned to corresponding neighbor metabolites in GCMN as their "pseudo" spectra; the propagation is done by searching predicted retention times, MS1, and "pseudo" spectra against metabolite features in untargeted metabolomics data. Then, the annotated metabolite features were used as new seeds for annotation propagation again. Performance evaluation of SGMNS showed its unique advantages for metabolome annotation. The developed method was applied to annotate six typical biological samples; a total of 701, 1557, 1147, 1095, 1237, and 2041 metabolites were annotated from the cell, feces, plasma (NIST SRM 1950), tissue, urine, and their pooled sample, respectively, and the annotation accuracy was >83% with RSD <2%. The results show that SGMNS fully exploits the chemical space of the existing metabolomes for metabolite deep annotation and overcomes the shortcoming of insufficient reference MS/MS spectra.


Assuntos
Curadoria de Dados , Espectrometria de Massas em Tandem , Metabolômica/métodos , Metaboloma , Cromatografia Líquida
9.
Natl Sci Rev ; 10(5): nwad034, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37260928

RESUMO

Since the discovery of superconductivity in MgB2 (Tc ∼ 39 K), the search for superconductivity in related materials with similar structures or ingredients has never stopped. Although about 100 binary borides have been explored, only a few of them show superconductivity with relatively low Tc. In this work, we report the discovery of superconductivity up to 32 K, which is the highest Tc in transition-metal borides, in MoB2 under pressure. The Tc of MoB2 in the α phase can be well explained by theoretical calculations in the framework of electron-phonon coupling. Furthermore, the coupling between the d electrons of Mo and the out-of-plane Mo-phonon modes are the main driving force of the 32 K superconductivity of MoB2. Our study sheds light on the exploration of high-Tc superconductors in transition metal borides.

10.
Nano Lett ; 23(7): 2958-2963, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37011415

RESUMO

Here we use low-temperature and variable-temperature scanning tunneling microscopy to study the pnictide superconductor, Ba1-xSrxNi2As2. In the low-temperature phase (triclinic phase) of BaNi2As2, we observe the unidirectional charge density wave (CDW) with Q = 1/3 on both the Ba and NiAs surfaces. On the NiAs surface of the triclinic BaNi2As2, there are structural-modulation-induced chain-like superstructures with distinct periodicities. In the high-temperature phase (tetragonal phase) of BaNi2As2, the NiAs surface appears as the periodic 1 × 2 superstructure. Interestingly, in the triclinic phase of Ba0.5Sr0.5Ni2As2, the unidirectional CDW is suppressed on both the Ba/Sr and NiAs surfaces, and the Sr substitution stabilizes the periodic 1 × 2 superstructure on the NiAs surface, which enhance the superconductivity in Ba0.5Sr0.5Ni2As2. Our results provide important microscopic insights for the interplay among the unidirectional CDW, structural modulation, and superconductivity in this class of pnictide superconductors.

11.
Angew Chem Int Ed Engl ; 62(10): e202216086, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36573848

RESUMO

Searching for functional square lattices in layered superconductor systems offers an explicit clue to modify the electron behavior and find exotic properties. The trigonal SnAs3 structural units in SnAs-based systems are relatively conformable to distortion, which provides the possibility to achieve structurally topological transformation and higher superconducting transition temperatures. In the present work, the functional As square lattice was realized and activated in Li0.6 Sn2 As2 and NaSnAs through a topotactic structural transformation of trigonal SnAs3 to square SnAs4 under pressure, resulting in a record-high Tc among all synthesized SnAs-based compounds. Meanwhile, the conductive channel transfers from the out-of-plane pz orbital to the in-plane px +py orbitals, facilitating electron hopping within the square 2D lattice and boosting the superconductivity. The reorientation of p-orbital following a directed local structure transformation provides an effective strategy to modify layered superconducting systems.

12.
Materials (Basel) ; 15(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36363284

RESUMO

Recently, the hexagonal phase of ternary transition metal pnictides TT'X (T = Zr, Hf; T' = Ru; X = P, As), which are well-known noncentrosymmetric superconductors, were predicted to host nontrivial bulk topology. In this work, we systematically investigate the electronic responses of ZrRuAs to external pressure. At ambient pressure, ZrRuAs show superconductivity with Tc ~ 7.74 K, while a large upper critical field ~ 13.03 T is obtained for ZrRuAs, which is comparable to the weak-coupling Pauli limit. The resistivity of ZrRuAs exhibits a non-monotonic evolution with increasing pressure. The superconducting transition temperature Tc increases with applied pressure and reaches a maximum value of 7.93 K at 2.1 GPa, followed by a decrease. The nontrivial topology is robust and persists up to the high-pressure regime. Considering both robust superconductivity and intriguing topology in this material, our results could contribute to studies of the interplay between topological electronic states and superconductivity.

13.
Langmuir ; 38(42): 12773-12784, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36239489

RESUMO

Wood-based solar steam evaporators have been attracting increasing interest due to their great potential for addressing water scarcity by utilizing sustainable materials and energy. However, engineering a 3D porous structure within the wood lumens and its effect on solar vapor evaporation have not yet been well explored. Here, a natural wood-based solar evaporator with hierarchical pores is fabricated by assembling polyvinyl alcohol within the lumens through an ice-templating approach. The polyvinyl alcohol porous network is engineered from vertically aligned microchannels to dendritically bridged pores with a narrowed size of a few micrometers and significantly increased surface area. Although the formation of plenty of microscopic channels increases the capillary force in comparison to the native wood lumen, the morphology change induces a high tortuosity factor of the porous structure, resulting in a reduced water transportation rate as well as an increased contact angle. On the other hand, the high surface area of the engineered wood lumens and the good hydrophilicity of the filled polyvinyl alcohol improve the ratio of the formed intermediate water, contributing to reduced vaporization enthalpy. Consequently, by using polydopamine as the photothermal material, the hierarchically structured polyvinyl alcohol-wood solar evaporator exhibits an evaporation rate of 1.6 kg m-2 h-1 under 1 sun irradiation and a high solar evaporation efficiency of up to 107%, which are higher than most of the reported natural-wood-based solar evaporators. Moreover, by exploring the correlation between porous morphology and performance, it has been found that the polyvinyl alcohol-wood composite not only presents an inexpensive and sustainable evaporator but also provides guidelines for designing high-performance steam generation devices.

14.
World J Clin Cases ; 10(23): 8161-8169, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36159523

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) has been far more devastating than expected, showing no signs of slowing down at present. Heilongjiang Province is the most northeastern province of China, and has cold weather for nearly half a year and an annual temperature difference of more than 60ºC, which increases the underlying morbidity associated with pulmonary diseases, and thus leads to lung dysfunction. The demographic features and laboratory parameters of COVID-19 deceased patients in Heilongjiang Province, China with such climatic characteristics are still not clearly illustrated. AIM: To illustrate the demographic features and laboratory parameters of COVID-19 deceased patients in Heilongjiang Province by comparing with those of surviving severe and critically ill cases. METHODS: COVID-19 deceased patients from different hospitals in Heilongjiang Province were included in this retrospective study and compared their characteristics with those of surviving severe and critically ill cases in the COVID-19 treatment center of the First Affiliated Hospital of Harbin Medical University. The surviving patients were divided into severe group and critically ill group according to the Diagnosis and Treatment of New Coronavirus Pneumonia (the seventh edition). Demographic data were collected and recorded upon admission. Laboratory parameters were obtained from the medical records, and then compared among the groups. RESULTS: Twelve COVID-19 deceased patients, 27 severe cases and 26 critically ill cases were enrolled in this retrospective study. No differences in age, gender, and number of comorbidities between groups were found. Neutrophil percentage (NEUT%), platelet (PLT), C-reactive protein (CRP), creatine kinase isoenzyme (CK-MB), serum troponin I (TNI) and brain natriuretic peptides (BNP) showed significant differences among the groups (P = 0.020, P = 0.001, P < 0.001, P = 0.001, P < 0.001, P < 0.001, respectively). The increase of CRP, D-dimer and NEUT% levels, as well as the decrease of lymphocyte count (LYMPH) and PLT counts, showed significant correlation with death of COVID-19 patients (P = 0.023, P = 0.008, P = 0.045, P = 0.020, P = 0.015, respectively). CONCLUSION: Compared with surviving severe and critically ill cases, no special demographic features of COVID-19 deceased patients were observed, while some laboratory parameters including NEUT%, PLT, CRP, CK-MB, TNI and BNP showed significant differences. COVID-19 deceased patients had higher CRP, D-dimer and NEUT% levels and lower LYMPH and PLT counts.

15.
Adv Sci (Weinh) ; 9(30): e2203219, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36008123

RESUMO

By breaking the restrictions on traditional alloying strategy, the high entropy concept has promoted the exploration of the central area of phase space, thus broadening the horizon of alloy exploitation. This review highlights the marriage of the high entropy concept and van der Waals systems to form a new family of materials category, namely the high entropy van der Waals materials (HEX, HE = high entropy, X = anion clusters) and describes the current issues and next challenges. The design strategy for HEX has integrated the local feature (e.g., composition, spin, and valence states) of structural units in high entropy materials and the holistic degrees of freedom (e.g., stacking, twisting, and intercalating species) in van der Waals materials, and is successfully used for the discovery of high entropy dichalcogenides, phosphorus tri-chalcogenides, halogens, and MXene. The rich combination and random distribution of the multiple metallic constituents on the nearly regular 2D lattice give rise to a flexible platform to study the correlation features behind a range of selected physical properties, e.g., superconductivity, magnetism, and metal-insulator transition. The deliberate design of structural units and their stacking configuration can also create novel catalysts to enhance their performance in a bunch of chemical reactions.

16.
Nano Lett ; 22(14): 5635-5640, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35838660

RESUMO

Here, we use low-temperature scanning tunneling microscopy and spectroscopy to study the polar surfaces of PdCoO2. On the CoO2-terminated polar surface, we detect the quasiparticle interference pattern originating from the Rashba-like spin-split surface states. On the well-ordered Pd-terminated polar surface, we observe a regular lattice that has a larger lattice constant than the atomic lattice of PdCoO2. In comparison with the shape of the hexagonal Fermi surface on the Pd-terminated surface, we identify this regular lattice as a fully two-dimensional incommensurate charge modulation that is driven by the Fermi surface nesting. More interestingly, we also find the moiré pattern induced by the interference between the two-dimensional incommensurate charge modulation in the Pd layer and its atomic lattice. Our results not only show a new charge modulation on the Pd surface of PdCoO2 but also pave the way for fully understanding the novel electronic properties of this material.

17.
J Am Chem Soc ; 144(14): 6208-6214, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35357829

RESUMO

Here, we report on a new kind of compound, XδIr4X12-δ (X = P, As), the first hole-doped skutterudites superconductor. We provide atomic-resolution images of the caging As atoms using scanning transmission electron microscopy (STEM). By inserting As atoms into the caged structure under a high pressure, superconductivity emerges with a maximum transition temperature (Tc) of 4.4 K (4.8 K) in IrAs3 (IrP3). In contrast to all of the electron-doped skutterudites, the electronic states around the Fermi level in XδIr4X12-δ are dominated by the caged X atom, which can be described by a simple body-centered tight-binding model, implying a distinct pairing mechanism. Our density functional theory (DFT) calculations reveal an intimate relationship between the pressure-dependent local-phonon mode and the enhancement of Tc. The discovery of XδIr4X12-δ provides an arena to investigate the uncharted territory of hole-doped skutterudites, and the method proposed here represents a new strategy of carrier doping in caged structures, without introducing extra elements.

18.
J Biomed Inform ; 128: 104048, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35248795

RESUMO

The occurrence and development of diseases are related to the dysfunction of biomolecules (genes, metabolites, etc.) and the changes of molecule interactions. Identifying the key molecules related to the physiological and pathological changes of organisms from omics data is of great significance for disease diagnosis, early warning and drug-target prediction, etc. A novel feature selection algorithm based on the feature individual distinguishing ability and feature influence in the biological network (FS-DANI) is proposed for defining important biomolecules (features) to discriminate different disease conditions. The feature individual distinguishing ability is evaluated based on the overlapping area of the feature effective ranges in different classes. FS-DANI measures the feature network influence based on the module importance in the correlation network and the feature centrality in the modules. The feature comprehensive weight is obtained by combining the feature individual distinguishing ability and feature influence in the network. Then crucial feature subset is determined by the sequential forward search (SFS) on the feature list sorted according to the comprehensive weights of features. FS-DANI is compared with the six efficient feature selection methods on ten public omics datasets. The ablation experiment is also conducted. Experimental results show that FS-DANI is better than the compared algorithms in accuracy, sensitivity and specificity on the whole. On analyzing the gastric cancer miRNA expression data, FS-DANI identified two miRNAs (hsa-miR-18a* and hsa-miR-381), whose AUCs for distinguishing gastric cancer samples and normal samples are 0.959 and 0.879 in the discovery set and an independent validation set, respectively. Hence, evaluating biomolecules from the molecular level and network level is helpful for identifying the potential disease biomarkers of high performance.


Assuntos
Algoritmos , Área Sob a Curva
19.
Adv Mater ; 33(42): e2102813, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34477250

RESUMO

Superconductivity in topological kagome metals has recently received great research interests. Here, charge density wave (CDW) orders and the evolution of superconductivity under various pressures in CsV3 Sb5 single crystal with V kagome lattice are investigated. By using high-resolution scanning tunneling microscopy/spectroscopy (STM/STS), two CDW orders in CsV3 Sb5 are observed which correspond to 4a × 1a and 2a × 2a superlattices. By applying pressure, the superconducting transition temperature Tc is significantly enhanced and reaches a maximum value of 8.2 K at around 1 GPa. Accordingly, CDW state is gradually declined as increasing the pressure, which indicates the competing interplay between CDW and superconducting state in this material. The broad superconducting transitions around 0.4-0.8 GPa can be related to the strong competition relation among two CDW states and superconductivity. These results demonstrate that CsV3 Sb5 is a new platform for exploring the interplay between superconductivity and CDW in topological kagome metals.

20.
ACS Appl Mater Interfaces ; 13(35): 42138-42145, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34432434

RESUMO

By preparing a series of high-quality Fe1.1Se0.8Te0.2 films on the CaF2 substrate via pulsed laser deposition, we reveal the evolution of the structure as well as the superconductivity with the film thickness. We have found that there exists a threshold thickness above which the critical temperature Tc reaches its optimal value of 23.18 K with large activation energy, promising for high-field technological applications. Most importantly, the thick films have been found in a metastable state due to the fragile balance between the increased strain energy and the large compressive stress. Once the balance is broken by an external perturbation, a unique structure avalanche happens with a large part of the film exfoliated from the substrate and curves out. The exfoliated part of the film remains a single phase, with its lattice parameter and Tc recovering the bulk values. Our results clearly demonstrate the close relation between the compressive stress of the film/substrate interface and the high critical temperature observed in FeSeTe films. Moreover, this also provides an efficient way to fabricate free-standing single-phase FeSeTe crystals in the phase-separation regime.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...